ESC
NuxtStarterAI logo
Menu
On this page

Features > ChatGPT Integration

ChatGPT is a robust AI model that you can incorporate into your NuxtStarter app. It's an excellent method to integrate AI-powered chatbots into your application. 🤖


Firstly, include your OPENAI_API_KEY to your .env file.


Then, you can utilize the ChatGPT API in two ways:


1. ChatGPT Assistant

Inside your NuxtStarter app, you can directly utilize the ChatGPT API by sending a POST request to the API endpoint. Go to the /libs/gpt.ts and check out the sendChatGPTCompletion method.
Pass this function the messages you wish to send to the ChatGPT, and it will provide the response. It includes built-in custom retry logic, so you don't need to concern yourself with managing retries. ☀️


/libs/gpt.ts
1 2 .... 3 const body = JSON.stringify({ 4 model: "gpt-4", // gpt-4, gpt-3.5-turbo, etc 5 messages, // array of message objects with role and content. e.g. [{role: "user", content: "What's the weather in San Francisco?"}] 6 max_tokens: max, // max tokens to generate in the response 7 temperature: temp, // temperature of the response, higher is more random 8 user: userId, // user id 9 }); 10 11 const options = { 12 headers: { 13 Authorization: `Bearer ${process.env.OPENAI_API_KEY}`, // place in your API key here or use environment variables 14 "Content-Type": "application/json", 15 }, 16 }; 17 18 try { 19 // Custom retry delay 20 axiosRetry(axios, { 21 retryDelay: (retryCount) => { 22 return retryCount * 1; 23 }, 24 retries: 15, 25 }); 26 27 const res = await axios.post(url, body, options); 28 29 const answer = res.data.choices[0].message.content; 30 const usage = res?.data?.usage; 31 32 console.log(">>> " + answer); 33 console.log( 34 "TOKENS USED: " + 35 usage?.total_tokens + 36 " (prompt: " + 37 usage?.prompt_tokens + 38 " / response: " + 39 usage?.completion_tokens + 40 ")" 41 ); 42 console.log(" 43"); 44 45 return answer; 46 } catch (e) { 47 console.error("GPT Error: " + e?.response?.status, e?.response?.data); 48 return null; 49 } 50}; 51 52

Here below is an example of a messages array for sendChatGPTCompletion function.

1const messages = 2 [ 3 { 4 role: "user", 5 content: "What's the weather in San Francisco?", 6 }, 7 { 8 role: "assistant", 9 content: "I can help with that. Let me check...", 10 } 11 ]; 12

2. ChatGPT for Function Calling

You can also utilize the ChatGPT completion API to determine which function to call based on the user's input. This is beneficial when you want to develop a chatbot capable of invoking different functions based on the user's input.

Inside /libs/gpt.ts , simply use sendChatGPTFunctions by providing the user messages and the available functions you want to choose from, ChatGPT will automatically determine which function to call based on the user's input, along with any parameters needed.


Here there is an example of a tools array to use sendChatGPTFunctions function to call a function based on the user's input.


/libs/gpt.ts
1 2 3 const tools = [ // List of available functions, called tools. 4 { 5 "type": "function", 6 "function": { 7 "name": "get_current_weather", 8 "description": "Get the current weather in a given location", 9 "parameters": { 10 "type": "object", 11 "properties": { 12 "location": { 13 "type": "string", 14 "description": "The city and state, e.g. San Francisco, CA", 15 }, 16 "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, 17 }, 18 "required": ["location"], 19 }, 20 } 21 } 22 ]; 23 24 const body = JSON.stringify({ 25 model: "gpt-3.5-turbo", // gpt-4, gpt-3.5-turbo, etc 26 messages, // array of message objects with role and content. e.g. [{role: "user", content: "What's the weather in San Francisco?"}] 27 max_tokens: max, // max tokens to generate in the response 28 temperature: temp, // temperature of the response, higher is more random 29 tools: tools, // array of available function objects 30 tool_choice: "auto", // let ChatGPT decide when and which function to call 31 }); 32 33 const options = { 34 headers: { 35 Authorization: `Bearer ${process.env.OPENAI_API_KEY}`, // place in your API key here or use environment variables 36 "Content-Type": "application/json", 37 }, 38 }; 39 40 try { 41 // Custom retry delay 42 axiosRetry(axios, { 43 retryDelay: (retryCount) => { 44 return retryCount * 1; 45 }, 46 retries: 15, 47 }); 48 49 const res = await axios.post(url, body, options); 50 51 const toolCalls = res.data.choices[0].message.tool_calls; 52 const usage = res?.data?.usage; 53 54 console.log( 55 "TOKENS USED: " + 56 usage?.total_tokens + 57 " (prompt: " + 58 usage?.prompt_tokens + 59 " / response: " + 60 usage?.completion_tokens + 61 ")" 62 ); 63 64 return toolCalls; 65 } catch (e) { 66 console.error("GPT Error: " + e?.response?.status, e?.response?.data); 67 return null; 68 } 69}; 70 71